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Human Population Growth
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James Watt and his 1769 steam engine 

©2012 R. Agrawal
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Energy: Fundamental to Our Lives!

Fossil fuel period
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Kremer M, The Quarterly Journal of Economics, 108, 1993



Energy: Fundamental to Our Lives!

Fossil fuel period

1 691769

Therefore, we must understand energy transformation 

©2013 R. Agrawal

, gy
and use issues to develop alternative energy strategies

Data source: Wikipedia & UN
Kremer M, The Quarterly Journal of Economics, 108, 1993



Beyond Fossil Fuels: Solar Economy

Fossil fuel period
Solar 

Economy 
i dperiod

©2013 R. Agrawal Data source: Wikipedia & UN



Why Solar Energy?

• Solar energy incident on earth in 1 hour1Solar energy incident on earth in 1 hour

~ 4.3 x 1020 J

• 2012 World primary energy consumption2

~ 5.1 x 1020 J

Solar is the only easily available energy source that 
can alone meet all the energy needs.

©2013 R. Agrawal

can alone meet all the energy needs.

1. Lewis and Nocera, PNAS, 2006
2. BP Statistical Review of World Energy, 2012



E f S l EEssence of Solar Economy

Transform and use solar photons on a muchTransform and use solar photons on a much 
smaller time scale ~ O(103-106 s)!

©2013 R. Agrawal



1. How Dense is Solar Energy?
1000 W/m2

~10 gallons per 
minute A 20 000 2minute

Or 

Area: ~20, 000 m2

~20 MW of power 
l

©2013 R. Agrawal

supply 
Source: epa.gov, Wikipedia



Ob ti 1Observation 1 
Low density of solar energy is a 

challenge for use
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2. Availability of Sunlight

Intermittency y

GeographicGeographic 
Variability

©2013 R. Agrawal Source: nrel.gov, NASA



Observation 2: 
Energ storage needed at allEnergy storage needed at all 

levels

~103 W~102 W ~106 W ~108 W
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3. Large Scale Energy Requirement
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World primary energy usage rate in 2007 was 14.8 TW
 By 2050 the usage rate could be 28 TW

©2013 R. Agrawal Adaptation : EIA

By 2050, the usage rate could be 28 TW
Consumption rate could double!



Observation 3 
Large scale only possible if costLarge-scale only possible if cost-

effective

©2013 R. Agrawal Barbose, Darghouth, Weaver & Wiser, LBNL,2013



Observation 4 
H i lHarnessing solar energy 

efficiently is vital
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Solar Economy Vision 

©2013 R. Agrawal Agrawal and Singh, Annual Rev. Chem. Bio. Eng. , 2010



Fuels and Chemicals

… possibly need renewable carbon sources…

…as well as Hydrogen…

©2013 R. Agrawal Agrawal and Singh, Annual Rev. Chem. Bio. Eng. , 2010



Renewable Carbon Sources

CO2 @ 2 @
398 ppm1

Direct
CO2?

SAW Dedicated Dedicated 

Aquatic Aquatic 
autotroph 
(Algae)

CO2?

biomassfuel crops
Regulated 
fuel crops

( g )( g )

Sustainably Available
Competing 
for land use

©2013 R. Agrawal

y
(SA) Biomass

for land use

1. July 2013: http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html



Observation 5 
SA bi iSA biomass = primary energy+ 

carbon source 
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Biomass-to-Fuel: Carbon Recoveryy

~ 26-47%  
biomass 
carboncarbon 

recovered as 
fuel

©2013 R. Agrawal
SA Biomass= sustainably available biomass

Singh, Delgass, Ribeiro and Agrawal, Environ. Sci. Tech., 2010



Standalone Processes+ SA Biomass for 
US TransportationUS Transportation

• Sustainably available biomass potential= 498 Million tons/yr1

• Transportation fuels use in the USA, 2011 =12.68 Mbbl/day2

12-20% (1.6-2.6 Mbbl/day) of current US 
transportation demand produced using SA 

biomass with standalone processesbiomass with standalone processes

©2013 R. Agrawal
1. Liquid transportation fuels NRC report, 2010
2. Davis et al., Transportation energy data book, 2012



Solar conversion efficiencies

5-50%

~ 50% 
efficientefficient

©2013 R. Agrawal

10-44%



Observation 6 
Bi i i il bBiomass is primarily a carbon source

Avoid using biomass for non-carbon 
needs (heat/electricity/H2)eeds ( eat/e ect c ty/ 2)

©2013 R. Agrawal



Augmented Biomass Conversion

©2013 R. Agrawal

Up to 100% biomass carbon recovery possible
Singh, Delgass, Ribeiro and Agrawal, Environ. Sci. Tech., 2010



Systematic Augmented Process 
SynthesisSynthesis

How to Find the optimum process?

©2013 R. Agrawal
FT=Fischer-Tropsch; HDO= hydrodeoxygenation



Augmented process synthesis:
MINLP modelMINLP model

Min Qsolar = QH 2

ηSTH

+ QHeat

ηSTH

+ Welec

ηSTE
…. Objective functionηSTH2

ηSTHe ηSTE

subject to,
f x y( ) = 0 Mass Energ balance thermod namic modelsf x, y( ) = 0
h x, y( ) ≤ 0
carbon ≥ carbon

…. Mass, Energy balance, thermodynamic models

…. Inequalities (split fractions, conversion etc.)

carboneff ≥ carbon t arget

xL ≤ x ≤ xU

{0 1}

…. Target carbon recovery level

…. Variable boundsy = {0,1} …. Variable bounds

• Branch and Bound based global optimization 

©2013 R. Agrawal

algorithm (BARON1)
MINLP= Mixed Integer Nonlinear Programming 

1. Tawarmalani and Sahinidis, Math Programm. , 2005



Benefit of Simultaneous Heat, Mass & 
Power integrationPower integration

Standalone
Consistently lower solar energy input than single 

pathway solutionp y

©2013 R. Agrawal Sun-to-H2 = 6.2%, Sun-to-heat= 37.5%, Sun-to- electricity =10%



Observation 7 
Systems analysis critical forSystems analysis critical for 

biomass utilization

©2013 R. Agrawal



Observation 8 
Effi i t l f l h dEfficient supply of solar hydrogen 

needed

©2013 R. Agrawal



What is the Most Efficient Process for 
Solar Hydrogen?Solar Hydrogen?

O (g)O (g)

Qsolar

H2O(l),
1 atm, Ta

H2O(l),
1 atm, Ta

Water-
splitting

( d th i )

O2(g)
1 atm, Ta

O2(g)
1 atm, Ta

, a, a (endothermic)
H2(g)

1 atm, Ta

H2(g)
1 atm, Ta

LHV of H produced from land

• Light  Photochemical

Sun-to-H2  efficiency (%)= 
LHV of H2 produced from land

Incident annual solar energy on the land 
×100

• Light   Photochemical 
• Heat  Thermochemical

H t li htEl t i it  El t l i

©2013 R. Agrawal

• Heat or light Electricity  Electrolysis



Solar Energy Input as Light: Spectrum

Photochemical process are limited by fraction of 
solar spectrum absorbedp

Theoretical Sun-to-H2 efficiency: 
31 - 46% 

(single or double band-gap photosystems)1

©2013 R. Agrawal 1.Bolton et al., Nature , 1985



Sun-to-H2 thermochemical process

Use solar energy as heat to utilize 
the entire solar spectrumthe entire solar spectrum

©2013 R. Agrawal



Using Solar Energy as Heat 

Indirect (Electrolytic)Direct (Thermal)

ORO

©2013 R. Agrawal



Practical Thermal Water-splitting 
heat exchange (∆Tmin)+ high pressure (Pop) g ( min) g p ( op)

Isun Concentrator H2 permeable
membrane

O2 permeable
membraneSun

Qsolar

Qloss

Membrane
Reactor,
Top, Pop 

Qheat,rxn

H2O(g) Top,
Pop

Qloss

Absorber at   
Top H+H2

O+O2

Qheat,Top

Qwork

Heat 
engine 

H2O(l)

Irreversible Heat Exchange

H2
T P

O2

Qheat,str

Qambient

H2
Ta, 1 atm

2 ( )
Ta, Pin

Ta, Pout1 Ta, Pout2 

H2O(l)

©2013 R. Agrawal

O2
Ta, 1 atm

Wsep

2 ( )
Ta, 1 atm Wpump



Thermal vs Electrolytic Water-splitting

Multijunction PVj
ηPV =44%

Electrolysis (950oC) with spectral resolution 38-45%

Electrolysis (950oC) with spectral resolution

y ( ) p

25-32%

38 45%

Electrolysis near room temperature Single junction PV 
ηPV =29%

©2013 R. Agrawal
C=8000, Ωratio = 5, Ωoptical =80%, ΩCarnot =50%, ΩComp =70%,

Ωhte,loss =0.49-0.17,  Ωdp,loss =10%, ∆Tmin =0 K



Observation 9 
A hi bl STH ffi iAchievable STH2 efficiency 

of 35-50% possible!

©2013 R. Agrawal



But Storing Energy as H2 is Inefficient…

Na-S Li-ionHydro80
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Need- high energy density and storage 
efficiency solutions!

Energy delivered per unit volume (GJ/m3)

©2013 R. Agrawal

y

Reference: EPRI report on Storage Technologies, 2010 
Hydro= pumped hydroelectric power, CAES= compressed air energy storage



Storing Energy at the Grid-level
F B l d bl lFor Baseload renewable power supply

©2013 R. Agrawal



What is Grid-level Storage?

Sunlight available ~1/5th of the day in USSunlight available 1/5 of the day in US

Average 100 MW l supplyAverage 100 MWelec supply…..

~ 2 GWh of electrical energy storage…. ~ 2 GWh of electrical energy storage

High density critical for Grid-levelHigh density critical for Grid level 
storage

©2013 R. Agrawal



Hydrocarbons for Energy Storage
CO2+H2 HC +H2OCO2 2 C 2O

Na-S Li-ionHydro80
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• Store as liquid to minimize volumes
• Avoid handling large volume of pressurized gas 

Energy delivered per unit volume (GJ/m3)

©2013 R. Agrawal

o d a d g a ge o u e o p essu ed gas

Reference: EPRI report on Storage Technologies, 2010 
Hydro= pumped hydroelectric power, CAES= compressed air energy storage



Closed Carbon Energy Storage Cycle
Liquid CO2  Liquid HCLiquid CO2  Liquid HC

Very little external carbon required as make up!

©2013 R. Agrawal

y q p



Is there a Preferred HC for Energy gy
Storage?

Consider the HC synthesis viaConsider the HC synthesis via
CO2+H2 HC +H2O

©2013 R. Agrawal



Metrics for HC Synthesis 
CO2+H2 HC +H2OCO2+H2 HC +H2O

E t d l b (kJ/ l C)• Exergy stored per mole carbon (kJ/mol C)

• Fraction of H2 exergy recovered in the fuel (%)

• Exergy density as a liquid (GJ/m3)

©2013 R. Agrawal



Metric #1: Exergy Stored per mole Carbon

Fuel Exergy per carbon (kJ/mol C)
Methane 806Methane 806
Ethane 723

Propane 692Propane 692
Iso-octane 652

Cetane 640
Methanol 693
Ethanol 654

Dimethyl Ether (DME) 684

©2013 R. Agrawal



Metric #1: Exergy Stored per mole Carbon

Fuel Exergy per carbon (kJ/mol C)
Methane 806Methane 806
Ethane 723

Propane 692Propane 692
Iso-octane 652

Cetane 640
Methanol 693
Ethanol 654

Dimethyl Ether (DME) 684

• Methane stores the highest energy per carbon

©2013 R. Agrawal

Methane stores the highest energy per carbon 
atom  least carbon supply



Metric #2: Fraction of H2 Exergy Stored
Fuel Fraction of H2 exergy in fuel (%)

Methane 85.8
Ethane 88.0

Propane 88.4
Iso-octane 88.9

Cetane 89.0
M h l 98 3Methanol 98.3
Ethanol 92.8

Dimethyl Ether (DME) 97 1Dimethyl Ether (DME) 97.1

©2013 R. Agrawal



Metric #2: Fraction of H2 Exergy Stored
Fuel Fraction of H2 exergy in fuel (%)

Methane 85.8
Ethane 88.0

Propane 88.4
Iso-octane 88.9

Cetane 89.0
M h l 98 3Methanol 98.3
Ethanol 92.8

Dimethyl Ether (DME) 97 1Dimethyl Ether (DME) 97.1

• Methanol and DME top candidate for H2 efficiency

©2013 R. Agrawal

Methanol and DME top candidate for H2 efficiency



Metric #3: Exergy Density as Liquid
Fuel Exergy density as liquid (GJ/m3)

Methane 21.1
Ethane 25.2

Propane 25.9
Iso-octane 27.4

Cetane 25.5
M h l 12 9Methanol 12.9
Ethanol 18.6

Dimethyl Ether (DME) 20 2Dimethyl Ether (DME) 20.2

©2013 R. Agrawal



Metric #3: Exergy Density as Liquid
Fuel Exergy density as liquid (GJ/m3)

Methane 21.1
Ethane 25.2

Propane 25.9
Iso-octane 27.4

Cetane 25.5
M h l 12 9Methanol 12.9
Ethanol 18.6

Dimethyl Ether (DME) 20 2Dimethyl Ether (DME) 20.2

• Octane has the highest density

©2013 R. Agrawal

Octane has the highest density



No single fuel favored in all three g
metrics..

Trade-off between metrics needs to 
be optimized for different end uses

©2013 R. Agrawal



Among HC molecules..
… Consider the Use of Methane… Consider the Use of Methane

Fuel Exergy per carbon (kJ/mol C)
Methane 806Methane 806
Ethane 723

Propane 692Propane 692
Iso-octane 652

Cetane 640
Methanol 693
Ethanol 654

Dimethyl Ether (DME) 684
• CH4  highest energy content per carbon 

©2013 R. Agrawal

• Liquefaction energy penalty (-162 oC)



Methane-cycle (Storage mode)

-56 oC-162 oC

Minimize solar energy penalty of CH liquefaction

©2013 R. Agrawal
SOEC=Solid Oxide Electrolysis

Minimize solar energy penalty of CH4 liquefaction



Methane-cycle (Delivery mode)

• Solid Oxide 
Fuel Cell 
for H2

-162 oC -56 oC-162 oC -56 oC

No power consumed for CO2 capture and 

©2013 R. Agrawal

liquefaction!



Methane Storage Simulation Results
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• Efficiency: Methane superior to H2

• Volume: Methane superior to other options

Energy delivered per unit volume (GJ/m )

©2013 R. Agrawal

• Volume: Methane superior to other options
Simulations carried out using Aspen Plus



Similar efficiencies possible withSimilar efficiencies possible with 
Methanol (52-54%)

©2013 R. Agrawal



Improve Efficiency of Energy UseImprove Efficiency of Energy Use

©2013 R. Agrawal



Improve Efficiency of Energy Use

An Example: Multicomponent 
nonazeotropic distillation

©2013 R. Agrawal



Why is Separations Research Important?

• 40-70% of operating and capital cost of a typical chemical plant is due to
separations

• 90-95% of all separations in chemical and petrochemical plants are by
distillation

• 40,000 distillation columns in operation in US, and consume equivalent of
~ 1.2 million bbl of oil per day

• US refineries consume ~ 0.4 million bbl of oil per day for crude oil
distillation alone

i f i di ill i ld illi bbl f– A saving of 20-50% in distillation energy could save 85-220 million bbl of
oil equivalent per year ( ~ 8.5-22 billion dollars/year @ $100/bbl).

– These energy savings are comparable to the discovery of a new giant oil
fi ld ( 00 illi bbl) !field (100 million bbl) every year!

© R. Agrawal, 2013



For a given application, our aim is to
develop a method that allows adevelop a method that allows a
systematic search and identification of
a separation system that is costp y
effective and energy efficient

© R. Agrawal, 2013



Developed a Method to Generate Search 
Space of Basic Configurations

A Four Component Example

p g

But, the number of configurations increase rapidly with number of components 
Number of Regular-column configurations

components in feed
g g

Without Thermal 
Coupling

With Thermal 
Coupling

4 18 134

5 203 5 9255 203 5,925

6 4,373 502,539

7 185,421 85,030,771

8 15,767,207 29,006,926,681

…. and we still have to identify the best one ! 
Shah VH, Agrawal R.. AIChE Journal. 56,  1759 (2010)© R. Agrawal, 2013



NLP Formulation to Ranklist the Entire 
Search Spacep
Mass Balance 

Equations
Separation

i,AB i,CD i,ABCDf +f =f
i i di tα f

 Separation 
Equations

Intervariable
relations

i i,dist
S

i i j

α f
V

α -θ
≤

i i iLTC+VTC=FTC


col,i

1: 1
min V

i n= −


Optimization 
improvement

Objective 
Function

col,i transition
1: 1

V V
i n= −

≤

 Succeeded in enumerating the useful distillation configurations
for a given separation and rank them according to required vapor
dutyy

 Solved the problem of developing a quick and reliable screening
tool for multicomponent distillation

 Successfully applied our tool to proprietary separations at a
j h i l d id tifi d l tt timajor chemical company and identified several attractive

configurations
Nallasivam U, Shah VH, Shenvi AA, Tawarmalani M, Agrawal R. AIChE  Journal. 59, 971 (2013)

*Branch-And-Reduce Optimization Navigator© R. Agrawal, 2013



An Example

Petroleum crude distillation Example Energy Efficient Configurations

Petroleum crude
distillation
consumes hugeg
amount of energy!

Different refineries
process different

Current Configuration

p
crudes, yet they have
generally used the
same configuration
for 75+ years

 Identified hundreds of configurations
which are potentially 15-50% more
energy efficient than the above

y

configuration

Shah VH, Agrawal R.. AIChE Journal. 56,  1759 (2010)© R. Agrawal, 2013



Identified Novel Heat and Mass Integrated 
Configurations g

Regular-Column 
Configuration

Heat and Mass 
Integrated g

Configuration

Shenvi AA, Shah VH, Agrawal R. AIChE Journal. 59,  272 (2013)



Multicomponent Distillation ResearchMulticomponent Distillation Research 
is Still Vibrant and Fun!

Also Relevant to the Solar Economy



In Summary…
• Solar economy requires energy and carbon efficient solutionsSolar economy requires energy and carbon efficient solutions

• Fuels and Chemicals
• SA biomass analogous to primary energy/carbon source
• Preserve carbon - augmented biomass conversion

Simultaneous heat mass and power process integration• Simultaneous heat, mass and power process integration
• Solar Hydrogen production

• STH2 efficiency of 35-50% using membrane reactors2 y g
• Superior to known electrolytic and single bandgap methods

• Closed carbon cycles for grid-level energy storage
• Storage efficiency of 55-58% and much reduced volume

• Use efficiency improvement in traditional areas will still be 
needed. Example: Multicomponent Distillation

©2013 R. Agrawal

p p
• Energy modeling is multidimensional
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Thank you….Thank you


