

#### **Human Population Growth**





James Watt and his 1769 steam engine

Source: David J.C. Mackay 2009



#### **Energy: Fundamental to Our Lives!**





#### **Energy: Fundamental to Our Lives!**



### Therefore, we must understand energy transformation and use issues to develop alternative energy strategies



#### **Beyond Fossil Fuels: Solar Economy**





#### Why Solar Energy?

Solar energy incident on earth in 1 hour<sup>1</sup>

$$\sim 4.3 \times 10^{20} J$$

2012 World primary energy consumption<sup>2</sup>

$$\sim 5.1 \times 10^{20} J$$

Solar is the only easily available energy source that can alone meet all the energy needs.







#### **Essence of Solar Economy**

### Transform and use solar photons on a much smaller time scale ~ O(10<sup>3</sup>-10<sup>6</sup> s)!



#### 1. How Dense is Solar Energy?



~10 gallons per minute

Or

~20 MW of power supply

1000 W/m<sup>2</sup>



Area: ~20, 000 m<sup>2</sup>



Source: epa.gov, Wikipedia



# Observation 1 Low density of solar energy is a challenge for use



#### 2. Availability of Sunlight

#### Intermittency

### **Geographic Variability**





Source: nrel.gov, NASA

#### Observation 2: Energy storage needed at all levels





#### 3. Large Scale Energy Requirement



- World primary energy usage rate in 2007 was 14.8 TW
- By 2050, the usage rate could be 28 TW

Consumption rate could double!

Adaptation : EIA



## Observation 3 Large-scale only possible if costeffective





# Observation 4 Harnessing solar energy efficiently is vital



#### **Solar Economy Vision**





#### **Fuels and Chemicals**



... possibly need renewable carbon sources...

...as well as Hydrogen...





#### **Renewable Carbon Sources**



# Observation 5 SA biomass = primary energy+ carbon source



#### **Biomass-to-Fuel: Carbon Recovery**





### Standalone Processes+ SA Biomass for US Transportation

- Sustainably available biomass potential= 498 Million tons/yr<sup>1</sup>
- Transportation fuels use in the USA, 2011 =12.68 Mbbl/day<sup>2</sup>

12-20% (1.6-2.6 Mbbl/day) of current US transportation demand produced using SA biomass with standalone processes



2. Davis et al., Transportation energy data book, 2012



#### Solar conversion efficiencies





## Observation 6 Biomass is primarily a carbon source

Avoid using biomass for non-carbon needs (heat/electricity/H<sub>2</sub>)



#### **Augmented Biomass Conversion**



#### Up to 100% biomass carbon recovery possible



## Systematic Augmented Process Synthesis





### Augmented process synthesis: MINLP model

$$\begin{aligned} &\textit{Min } Q_{solar} = \frac{Q_{H2}}{\eta_{STH_2}} + \frac{Q_{Heat}}{\eta_{STHe}} + \frac{W_{elec}}{\eta_{STE}} & \dots \text{Objective function} \\ &\text{subject to,} \\ &f\left(\mathbf{x},\mathbf{y}\right) = 0 & \dots \text{Mass, Energy balance, thermodynamic models} \\ &h\left(\mathbf{x},\mathbf{y}\right) \leq 0 & \dots \text{Inequalities (split fractions, conversion etc.)} \\ &\textit{carbon}_{eff} \geq carbon_{target} & \dots \text{Target carbon recovery level} \\ &\mathbf{x}^L \leq \mathbf{x} \leq \mathbf{x}^U & \dots \text{Variable bounds} \end{aligned}$$

 Branch and Bound based global optimization algorithm (BARON¹)



 $y = \{0, 1\}$ 

### Benefit of Simultaneous Heat, Mass & Power integration



Consistently lower solar energy input than single pathway solution





# Observation 7 Systems analysis critical for biomass utilization





## Observation 8 Efficient supply of solar hydrogen needed



### What is the Most Efficient Process for Solar Hydrogen?



Sun-to-H<sub>2</sub> efficiency (%)= 
$$\frac{\text{LHV of H}_2 \text{ produced from land}}{\text{Incident annual solar energy on the land}} \times 100$$

- Light → Photochemical
- Heat → Thermochemical
- Heat or light → Electricity → Electrolysis



#### Solar Energy Input as Light: Spectrum

### Photochemical process are limited by fraction of solar spectrum absorbed

Theoretical Sun-to-H<sub>2</sub> efficiency:
31 - 46%
(single or double band-gap photosystems)<sup>1</sup>



#### Sun-to-H<sub>2</sub> thermochemical process

## Use solar energy as heat to utilize the entire solar spectrum



#### **Using Solar Energy as Heat**

#### **Direct (Thermal)**



#### **Indirect (Electrolytic)**





## Practical Thermal Water-splitting heat exchange ( $\Delta T_{min}$ )+ high pressure ( $P_{op}$ )





#### Thermal vs Electrolytic Water-splitting



C=8000,  $\Omega_{\rm ratio} = 5$ ,  $\Omega_{\rm optical} = 80\%$ ,  $\Omega_{\rm Carnot} = 50\%$ ,  $\Omega_{\rm Comp} = 70\%$ ,  $\Omega_{\rm hte,loss} = 0.49 - 0.17$ ,  $\Omega_{\rm dp,loss} = 10\%$ ,  $\Delta T_{\rm min} = 0$  K



# Observation 9 Achievable STH<sub>2</sub> efficiency of 35-50% possible!



# But Storing Energy as H<sub>2</sub> is Inefficient...



Need- high energy density and storage efficiency solutions!



# Storing Energy at the Grid-level For Baseload renewable power supply



### What is Grid-level Storage?

Sunlight available ~1/5<sup>th</sup> of the day in US

Average 100 MW<sub>elec</sub> supply.....

.... ~ 2 GWh of electrical energy storage

High density critical for Grid-level storage



# Hydrocarbons for Energy Storage $CO_2+H_2 \rightarrow HC + H_2O$



- Store as liquid to minimize volumes
- Avoid handling large volume of pressurized gas



# Closed Carbon Energy Storage Cycle Liquid $CO_2 \leftarrow \rightarrow$ Liquid HC



Very little external carbon required as make up!



# Is there a Preferred HC for Energy Storage?

# Consider the HC synthesis via $CO_2+H_2 \rightarrow HC + H_2O$



# Metrics for HC Synthesis $CO_2+H_2\rightarrow HC +H_2O$

- Exergy stored per mole carbon (kJ/mol C)
- Fraction of H<sub>2</sub> exergy recovered in the fuel (%)
- Exergy density as a liquid (GJ/m³)



### Metric #1: Exergy Stored per mole Carbon

| Fuel                 | Exergy per carbon (kJ/mol C) |  |  |
|----------------------|------------------------------|--|--|
| Methane              | 806                          |  |  |
| Ethane               | 723                          |  |  |
| Propane              | 692                          |  |  |
| Iso-octane           | 652                          |  |  |
| Cetane               | 640                          |  |  |
| Methanol             | 693                          |  |  |
| Ethanol              | 654                          |  |  |
| Dimethyl Ether (DME) | 684                          |  |  |



### Metric #1: Exergy Stored per mole Carbon

| Fuel                 | Exergy per carbon (kJ/mol C) |  |
|----------------------|------------------------------|--|
| Methane              | 806                          |  |
| Ethane               | 723                          |  |
| Propane              | 692                          |  |
| Iso-octane           | 652                          |  |
| Cetane               | 640                          |  |
| Methanol             | 693                          |  |
| Ethanol              | 654                          |  |
| Dimethyl Ether (DME) | 684                          |  |

 Methane stores the highest energy per carbon atom → least carbon supply



# Metric #2: Fraction of H<sub>2</sub> Exergy Stored

| Fuel                 | Fraction of H <sub>2</sub> exergy in fuel (%) |  |  |
|----------------------|-----------------------------------------------|--|--|
| Methane              | 85.8                                          |  |  |
| Ethane               | 88.0                                          |  |  |
| Propane              | 88.4                                          |  |  |
| Iso-octane           | 88.9                                          |  |  |
| Cetane               | 89.0                                          |  |  |
| Methanol             | 98.3                                          |  |  |
| Ethanol              | 92.8                                          |  |  |
| Dimethyl Ether (DME) | 97.1                                          |  |  |



### Metric #2: Fraction of H<sub>2</sub> Exergy Stored

| Fuel                 | Fraction of H <sub>2</sub> exergy in fuel (%) |  |  |
|----------------------|-----------------------------------------------|--|--|
| Methane              | 85.8                                          |  |  |
| Ethane               | 88.0                                          |  |  |
| Propane              | 88.4                                          |  |  |
| Iso-octane           | 88.9                                          |  |  |
| Cetane               | 89.0                                          |  |  |
| Methanol             | 98.3                                          |  |  |
| Ethanol              | 92.8                                          |  |  |
| Dimethyl Ether (DME) | 97.1                                          |  |  |

Methanol and DME top candidate for H<sub>2</sub> efficiency



# Metric #3: Exergy Density as Liquid

| Fuel                 | Exergy density as liquid (GJ/m³) |  |  |
|----------------------|----------------------------------|--|--|
| Methane              | 21.1                             |  |  |
| Ethane               | 25.2                             |  |  |
| Propane              | 25.9                             |  |  |
| Iso-octane           | 27.4                             |  |  |
| Cetane               | 25.5                             |  |  |
| Methanol             | 12.9                             |  |  |
| Ethanol              | 18.6                             |  |  |
| Dimethyl Ether (DME) | 20.2                             |  |  |



### Metric #3: Exergy Density as Liquid

| Fuel                 | Exergy density as liquid (GJ/m³) |  |  |
|----------------------|----------------------------------|--|--|
| Methane              | 21.1                             |  |  |
| Ethane               | 25.2                             |  |  |
| Propane              | 25.9                             |  |  |
| <b>Iso-octane</b>    | 27.4                             |  |  |
| Cetane               | 25.5                             |  |  |
| Methanol             | 12.9                             |  |  |
| Ethanol              | 18.6                             |  |  |
| Dimethyl Ether (DME) | 20.2                             |  |  |

Octane has the highest density



# No single fuel favored in all three metrics..

# Trade-off between metrics needs to be optimized for different end uses



# Among HC molecules.. ... Consider the Use of Methane

| Fuel                 | Exergy per carbon (kJ/mol C) |  |
|----------------------|------------------------------|--|
| Methane              | 806                          |  |
| Ethane               | 723                          |  |
| Propane              | 692                          |  |
| Iso-octane           | 652                          |  |
| Cetane               | 640                          |  |
| Methanol             | 693                          |  |
| Ethanol              | 654                          |  |
| Dimethyl Ether (DME) | 684                          |  |

- CH<sub>4</sub> → highest energy content per carbon
- Liquefaction energy penalty (-162 °C)



### Methane-cycle (Storage mode)



Minimize solar energy penalty of CH<sub>4</sub> liquefaction



# Methane-cycle (Delivery mode)

 Solid Oxide Fuel Cell for H<sub>2</sub>



No power consumed for CO<sub>2</sub> capture and liquefaction!



### Methane Storage Simulation Results



- Efficiency: Methane superior to H<sub>2</sub>
- Volume: Methane superior to other options



# Similar efficiencies possible with Methanol (52-54%)



### **Improve Efficiency of Energy Use**



#### Improve Efficiency of Energy Use

# An Example: Multicomponent nonazeotropic distillation



#### Why is Separations Research Important?

- 40-70% of operating and capital cost of a typical chemical plant is due to separations
- 90-95% of all separations in chemical and petrochemical plants are by distillation
- 40,000 distillation columns in operation in US, and consume equivalent of
   1.2 million bbl of oil per day
- US refineries consume ~ 0.4 million bbl of oil per day for crude oil distillation alone



- A saving of 20-50% in distillation energy could save 85-220 million bbl of oil equivalent per year (~8.5-22 billion dollars/year @\$100/bbl).
- These energy savings are comparable to the discovery of a new giant oil field (100 million bbl) every year!

For a given application, our aim is to develop a method that allows a systematic search and identification of a separation system that is cost effective and energy efficient

# Developed a Method to Generate Search Space of Basic Configurations

#### **A Four Component Example**



But, the number of configurations increase rapidly with number of components

| Number of components in feed | Regular-column configurations |                |
|------------------------------|-------------------------------|----------------|
| Components in leed           | Without Thermal               | With Thermal   |
|                              | Coupling                      | Coupling       |
| 4                            | 18                            | 134            |
| 5                            | 203                           | 5,925          |
| 6                            | 4,373                         | 502,539        |
| 7                            | 185,421                       | 85,030,771     |
| 8                            | 15,767,207                    | 29,006,926,681 |

.... and we still have to identify the best one!

# NLP Formulation to Ranklist the Entire Search Space



- Succeeded in enumerating the useful distillation configurations for a given separation and rank them according to required vapor duty
- Solved the problem of developing a quick and reliable screening tool for multicomponent distillation
- Successfully applied our tool to proprietary separations at a major chemical company and identified several attractive configurations

#### An Example

#### Petroleum crude distillation



- Petroleum crude distillation consumes huge amount of energy!
- Different refineries process different crudes, yet they have generally used the same configuration for 75+ years
- Identified hundreds of configurations which are potentially 15-50% more energy efficient than the above configuration

#### **Example Energy Efficient Configurations**





# Identified Novel Heat and Mass Integrated Configurations



Regular-Column Configuration

Heat and Mass Integrated Configuration

# Multicomponent Distillation Research is Still Vibrant and Fun!

Also Relevant to the Solar Economy

### In Summary...

Solar economy requires energy and carbon efficient solutions

#### Fuels and Chemicals

- SA biomass analogous to primary energy/carbon source
- Preserve carbon augmented biomass conversion
- Simultaneous heat, mass and power process integration
- Solar Hydrogen production
  - STH<sub>2</sub> efficiency of 35-50% using membrane reactors
  - Superior to known electrolytic and single bandgap methods
- Closed carbon cycles for grid-level energy storage
  - Storage efficiency of 55-58% and much reduced volume
- Use efficiency improvement in traditional areas will still be needed. Example: Multicomponent Distillation
- Energy modeling is multidimensional



# **Acknowledgments**

#### **Funding**









#### **Acknowledgments (Current Collaborators)**

#### **Energy Systems Analysis and Distillation:**

**Prof. Mohit Tawarmalani** (Krannert School of Management)

#### **Biomass To Liquid Fuel:**

Prof. Nick Delgass, Prof. Fabio Ribeiro (Chemical Engineering)

**Prof. Maureen McCann** (Biological Sciences Molecular Biosciences)

Prof. Nick Carpita (Agriculture-Botany and Plant Pathology)

Prof. Hilkka Kenttämaa (Chemistry)



#### The Research Team



# "A Great time to be a Chemical Engineer"



